Professor Mahfouz's research interests are focused on developing genome-engineering technologies for basic biology and biotechnology. The application of genome editing technologies requires highly specific and customizable DNA binding modules that can be engineered to bind any user-defined DNA sequence.
Transcriptional activator-like effectors (TALEs) are proteins secreted by Xanthomonas bacteria when they infect plants. TALEs contain a modular DNA binding domain that can be easily engineered to bind any sequence of interest, and have been used, by our group and others, to provide user-selected DNA-binding modules to generate chimeric nucleases and transcriptional regulators in mammalian cells and plants.
TALE DNA binding modules fused with endonucleases (TALENs) can direct nuclease activity to site-specific sequences in the genome with extreme precision, allowing targeted gene knock out, integration and correction. Developing TALE-based technologies will allow researchers to routinely and efficiently edit genomes of virtually any species, by directing mutations in a truly targeted fashion.